
- 1. Легковой автомобиль движется по шоссе со скоростью, модуль которой $\upsilon=18~\frac{\rm M}{\rm c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя t=1,0 с, а модуль ускорения автомобиля при торможении $a=3,6~\frac{\rm M}{\rm c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- **2.** Легковой автомобиль движется по шоссе со скоростью, модуль которой $\upsilon=22~\frac{\rm M}{\rm c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя t=0,80 с, а модуль ускорения автомобиля при торможении $a=5,0~\frac{\rm M}{\rm c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- 3. Легковой автомобиль движется по шоссе со скоростью, модуль которой $\upsilon=30~\frac{\rm M}{\rm c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя t=0,60 с, а модуль ускорения автомобиля при торможении $a=6,0~\frac{\rm M}{\rm c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- **4.** Легковой автомобиль движется по шоссе со скоростью, модуль которой $\upsilon=14$ $\frac{\rm M}{\rm c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя t=0,60 с, а модуль ускорения автомобиля при торможении a=5,0 $\frac{\rm M}{\rm c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- **5.** Легковой автомобиль движется по шоссе со скоростью, модуль которой $\upsilon=15~\frac{\rm M}{\rm c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя $t=0.95~\rm c$, а модуль ускорения автомобиля при торможении $\rm a=6.0~\frac{\rm M}{\rm c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- **6.** На горизонтальном прямолинейном участке сухой асфальтированной дороги водитель применил экстренное торможение. Тормозной путь автомобиля до полной остановки составил $s=31\,\mathrm{m}$. Если коэффициент трения скольжения между колесами и асфальтом $\mu=0,65$, то модуль скорости υ_0 движения автомобиля в начале тормозного пути равен ... $\frac{\mathrm{M}}{c}$.
- 7. Аэросани двигались прямолинейно по замерзшему озеру со скоростью, модуль которой $\upsilon_0=9,0$ $\frac{\rm M}{\rm C}$. Затем двигатель выключили. Если коэффициент трения скольжения между полозьями саней и льдом $\mu=0,050,$ то пусть s, который пройдут аэросани до полной остановки, равен ... м.
- **8.** На горизонтальном прямолинейном участке мокрой асфальтированной дороги водитель автомобиля, двигавшегося со скоростью, модуль которой $\upsilon_0=72~\frac{\mathrm{KM}}{\mathrm{q}},$ применил экстренное торможение. Если коэффициент трения скольжения между колесами и асфальтом $\mu=0,40,$ то тормозной путь s, пройденный автомобилем до полной остановки, равен ... м.
- **9.** На горизонтальном прямолинейном участке сухой асфальтированной дороги водитель применил экстренное торможение. Тормозной путь автомобиля до полной остановки составил $s=43\,\mathrm{m}$. Если коэффициент трения скольжения между колесами и асфальтом $\mu=0,3$, то модуль скорости υ_0 движения автомобиля в начале тормозного пути равен ... $\frac{\mathrm{m}}{c}$.

- 10. Автомобиль, двигавшийся со скоростью \vec{v}_0 по прямолинейному горизонтальному участку дороги, начал экстренное торможение. На участке тормозного пути длиной $s=30\,$ м модуль скорости движения автомобиля уменьшился до $\upsilon=10,0\,\frac{\mathrm{M}}{\mathrm{C}}$. Если коэффициент трения скольжения между колесами и асфальтом $\mu=0,50,$ то модуль скорости υ_0 движения автомобиля в начале тормозного пути равен ... $\frac{\mathrm{M}}{\mathrm{C}}$.
- **11.** При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке радиуса R=10 м. Если коэффициент трения $\mu=0,50$, то модуль минимальной скорости υ_{\min} движения мотоциклиста равен ... м/с. Ответ округлите до целых.
- **12.** При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке с минимально возможной скоростью, модуль которой $\upsilon_{\min} = 12$ м/с. Если коэффициент трения $\mu = 0,60$, то радиуса R окружности, по которой движется мотоциклист равен ... дм. Ответ округлите до целых.
- **13.** При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке радиуса R=12 м. Если коэффициент трения $\mu=0,48$, то модуль минимальной скорости υ_{\min} движения мотоциклиста равен ... м/с. Ответ округлите до целых.
- **14.** Камень массой m=0,20 кг бросили с башни в горизонтальном направлении с начальной скоростью, модуль которой $\upsilon_0=20$ $\frac{\mathrm{M}}{\mathrm{C}}$. Кинетическую энергию $E_{\mathrm{K}}=80$ Дж камень будет иметь через промежуток времени Δt после броска, равный ... с.
- **15.** Камень массой m=0,40 кг бросили с башни в горизонтальном направлении с начальной скоростью, модуль которой $\upsilon_0=15$ $\frac{\mathrm{M}}{\mathrm{C}}$. Кинетическая энергия E_{K} камня через промежуток времени $\Delta t=1,0$ с после броска равна ...Дж.
- **16.** На рисунке приведён график зависимости кинетической энергии E_{κ} тела, движущегося вдоль оси Ox, от координаты x. На участке AB модуль результирующей сил, приложенных к телу, равен ... Н.

